NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY #### **FACULTY OF HEALTH AND APPLIED SCIENCES** #### **DEPARTMENT OF MATHEMATICS AND STATISTICS** | QUALIFICATION: BACHELOR OF AGRICULTURAL MANAGEMENT | | | | | | | | | |--|-----------------------------|--------------------------------------|--|--|--|--|--|--| | QUALIFICATION | CODE: 07BAGR | LEVEL: 5 | | | | | | | | COURSE CODE: | AGS520S | COURSE NAME: AGRICULTURAL STATISTICS | | | | | | | | SESSION: JANUA | RY 2020 | PAPER: THEORY | | | | | | | | DURATION: 3 H | OURS | MARKS: 100 | | | | | | | | SECOND OPPORT | TUNITY/SUPPLEMENTARY EXAMIN | NATION QUESTION PAPER | | | | | | | | EXAMINER(S) | MR. J Amunyela | | | | | | | | | MODERATOR: | MR.A.Roux | | | | | | | | | | INSTRUCTIO | ONS | | | | | | | | Answer ALL the questions. Write clearly and neatly. Number the answers clearly. Marks will not be awarded for answers obtained without showing the necessary steps leading to them (the answers). ATTACHMENT: formula sheet, t-table, z-table, chi-square | | | | | | | | | | | DED MICCIDI E MA | | | | | | | | #### PERMISSIBLE MATERIALS 1. Non-Programmable Calculator without the cover THIS QUESTION PAPER CONSISTS OF _7_ PAGES (Including this front page) # **SECTION A** ## QUESTION 1 [20 marks] | Write | down th | ne letter corresponding to your choice next to the question number. | | |-------|---------------|---|----------| | 1.1 | The
centra | is the extent to which all the data values group around a l value | e
[2] | | | A. | central tendency | | | | В. | subset of the population | | | | С | measure of variability | | | | D | variance | | | | E. | sample point in the population | | | | | | | | 1.2 | Which
A. | of the following is a property of the mean? Unique | | | | В. | not affected by outliers | | | | C. | there may be several means | | | | D. | it is the sum of all observation | | | | E. | All the above are measures of central tendency | [2] | | 1.3 | | is the value of the middle observation in a dataset that has anked in increasing order. | [2] | | | A. | standard deviation | | | | B. | mode | | | | C. | range | | | | D. | mean | | | | F | median | | | 1.4 | Which of the following is true about normal distribution? | [2] | |-----|--|-----| | A. | measures of dispersions are all equal | | | В. | measures of central locations are all equal | | | C. | the mean equals to the variance | | | D. | parameters are equals to statistics | | | E. | median equals to the variance | | | 1.5 | Which of the following is true in statistics? | [2] | | A. | the mean is not part descriptive statistics | | | B. | same dataset cannot have different modes | | | C. | $ar{x}$ is the same as μ when the sample is small or large | | | D. | Two datasets with the same mean may have completely different spreads | | | E. | none | | | 1.6 | Consider a random variable X with the following probability distribution | | | X | 2 | 8 | 12 | 14 | 17 | |------|------|------|------|----|------| | P(X) | 0.10 | 0.20 | 0.15 | х | 0.15 | 1.6.1 The probability $P(X \le 12)$ is: [2] - A. 0.10 - B. 0.30 - C. 0.45 - D. 0.15 - E. none | 1.6.2 | The va | alue of x is | [2] | |-------|----------------|--|-----| | A. | 0.4 | | | | В. | 6.3 | | | | C. | 2.45 | | | | D. | 1 | | | | E. | none | | | | 1.7 | | of the following statement is not a possible application of a poison oution: The number of cases of a disease in different farms in given time The number of mutations in set sized regions of a chromosome | [2] | | | C.
D.
E. | The number of particles emitted by a radioactive source each time $ The \ number \ of \ births \ per \ hour \ during \ a \ given \ day $ $ V(X) = np, \ for \ a \ poison \ random \ variable \ X $ all the above | | | 1.8 | | arrower the confidence interval, | [2] | | | | more precise it is less precise it is | | | | C. the | easier computations becomes | | | | D. the | larger the population | | | | E. noi | ne | | - 1.9 Consider $H_0: \mu \ge 55$ and $H_1: \mu < 55$. If we reject H_0 we conclude that: [2] - A. the population mean is less than 55 - B. the population mean is more than 55 - C. the population mean is equal to 55 - D. the population mean is not equal to 55 - E. all the above #### SECTION B (Clearly show all your work) #### Question 2 (33 marks) - 2.1 Indicate whether the following statements are true (T) or false (F) - a. The two tailed hypotheses testing for the mean has only one rejection region [1] - **b.** The variable weight is an example of a continuous random variable [1] - c. If A is an event that a seed sown will germinate and B is an event that a seed sown will not germinate, then events A and B are mutual exclusive. [1] - **d.** The variable gender can be analysed as a nominal scale of measurement [1] - e. When performing a hypothesis testing for at least three means, we conduct a z-test. [1] - f. If n = 10, $\alpha = 5\%$ the t-critical value is 1.2034 for a two tailed test [1] - 2.2 The following are the 400 soybean plant heights collected from a particular plot. | Plant | 8-12 | 13-17 | 18-22 | 23-27 | 28-32 | 33-37 | 38-42 | 43-47 | |---------------|------|-------|-------|-------|-------|-------|-------|-------| | height(Cms) | | | | | | | | | | No. of plants | 6 | 17 | 25 | 86 | 125 | 77 | 55 | 9 | | (f_i) | | | | | | | | | | 2.2.1 | Estimate the average height of soybean | [4] | |-------|---|---------------| | 2.2.2 | Estimate the median height of soybean | [4] | | 2.2.2 | Estimate the modal height of soybean | [4] | | 2.2.3 | Estimate the variance and standard deviation for the height of soybean | [5] | | 2.3 | In certain district the incidence of rinderpest disease in cattle was found to be 89 | % (or | | | 0.8) in a dairy farm consisting of 10 animals. If the incidence of rinderpest is assu | ımed | | | to follow a binomial distribution, find | | | 2.3.1 | the average number of animals infected with the disease | [2] | | 2.3.2 | the probability that exactly two animals are infected with the disease | [3] | | 2.3.3 | the probability that at least 8 animals are infected | [5] | | QUEST | TION 3 [19 MARKS] | | | 3.1 | It is assumed that a sampling error of no more than ±3 is desired along with | 95% | | | confidence to determine a sample size appropriate to estimate the mean weigh | nts of | | | lambs soon after birth for farm A. Past data indicated that the standard deviatio | ns of | | | the weight have been approximately 2Kg for substantial period. | | | | Calculate the sample size needed | [3] | | 3.2 | During December 2018, rainfall figures were recorded over 10 farms in the Khoregion and the following information were obtained. $s=5.93, \bar{x}=29.6$ | omas | | a.) | At the 5% level of significance test the hypothesis that the mean rainfall in Khombelow 30mm. | nas is
[8] | | b.) | Construct a 95% confidence interval to estimate the mean rainfall amount fo Khomas region. | r the
[6] | | c. | What assumption must be made to be sure that the confident interval in b) about | ve is | | val | lid? | [2] | #### **QUESTION 4 [16 MARKS]** ۰,۰, 4.1 Suppose that we have the distribution of the yields (kg per plot) of two Ground nut varieties from 5 plots each. The distribution may be as follows: | Variety 1 | 46 | 48 | 50 | 52 | 54 | |-----------|----|----|----|----|----| | Variety 2 | 30 | 40 | 25 | 60 | 70 | | 4.1.1 | Can the researcher conclude that the average Yield for variety 1 is more than | that of | |-------|---|---------| | | variety 2? Use 5% significance level. | [9] | [1] 4.1.3 Estimate a 95% confidence interval for the average difference in yields for the two variety. [6] #### **QUESTION 5 [12 MARKS]** 5.1 The following data give the yield (in gm) from pigeonpea plants recorded over a period of five consecutive years (2014-2018). | Time(years) | 2014 | 2015 | 2016 | 2017 | 2018 | |-------------|-------|-------|-------|-------|-------| | Yield | 24.72 | 20.25 | 38.56 | 74.72 | 72.73 | 5.1.1 Fit by method of least squares a trend line equation for this dataset. (Use x =1,2...) [12] #### **FORMULA SHEET** $$M_e = L + \frac{c[0.5n - CF]}{f_{me}}$$ $$\bar{x} = \frac{\sum fx}{n}$$ $$\bar{x} \pm Z_{\frac{\alpha}{2}}(\frac{\sigma}{\sqrt{n}})$$ $$t_{stat} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$ $$\chi_{stat}^2 = \frac{(n-1)S^2}{\sigma^2}$$ $$E(X) = \sum x_i p_i$$ $$P(X=x) = \binom{n}{x} p^x q^{n-x}$$ $$b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$ $$\hat{\pi} = \frac{x_1 + x_2}{n_1 + n_2}$$ $$\bar{x} = \frac{\sum x}{n}$$ $$n = \frac{z^2 p(1-p)}{E^2}$$ $$p \pm z \sqrt{\frac{pq}{n}}$$ $$Z = \frac{x-\mu}{\sigma}$$ $$P(X=k) = \frac{e^{-\theta}\theta^x}{x!}$$ $$\hat{Y} = a + bx$$ $$M_0 = L + \frac{c[f_m - f_{m-1}]}{2f_m - f_{m-1} - f_{m+1}}$$ $$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$ $$(p_1 - p_2) \pm Z_{\frac{\alpha}{2}} \left(\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}} \right)$$ $$\frac{(n-1)S^2}{\chi^2 \frac{\alpha}{2}, n-1} < \sigma^2 < \frac{(n-1)S^2}{\chi^2 \frac{\alpha}{1-\frac{\alpha}{2}, n-1}}$$ $$\chi^2_{stat} = \sum \frac{(f_0 - f_e)^2}{f_e}$$ $$V(X) = \sum (x_i - \mu)^2 p(x_i)$$ $$n = \frac{Z^2(\sigma^2)}{E^2}$$ $$a = \bar{y} - b\bar{x}$$ $$Z_{cal} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\hat{\pi}(1 - \hat{\pi})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$ $$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n - 1}$$ $$s^2 = \frac{\sum (x_i - \bar{x})^2 f_i}{n-1}$$ $$\bar{x} \pm t_{\frac{\alpha}{2},n-1}(\frac{s}{\sqrt{n}})$$ $$(\bar{x}_A - \bar{x}_B) \pm t \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}$$ $$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \bar{\mu}_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$ $$\bar{x} = \sum x p(x)$$ and $V(X) = \sum (x_i - \bar{x})^2 p(x)$ #### TABLE of CRITICAL VALUES for STUDENT'S t DISTRIBUTIONS Column headings denote probabilities (a) above tabulated values. | | Column readings denote probabilities (a) above tabulated values. | | | | | | | | | | | | |------|--|--------|-------|-------|-------|--------|--------|--------|--------|---------|---------|---------| | d.f. | 0.40 | 0.25 | 0.10 | 0.05 | 0.04 | 0.025 | 0.02 | 0.01 | 0.005 | 0.0025 | 0.001 | 0.0005 | | 1 | 0.325 | 1.000 | 3.078 | 6.314 | 7.916 | 12.706 | 15.894 | 31.821 | 63.656 | 127.321 | 318.289 | 636.578 | | 2 | 0.289 | 0.816 | 1.886 | 2.920 | 3.320 | 4.303 | 4.849 | 6.965 | 9.925 | 14.089 | 22.328 | 31,600 | | 3 | 0.277 | 0.765 | 1.638 | 2.353 | 2.605 | 3.182 | 3.482 | 4.541 | 5.841 | 7.453 | 10.214 | 12.924 | | 4 | 0.271 | 0.741 | 1.533 | 2.132 | 2.333 | 2.776 | 2.999 | 3.747 | 4.604 | 5.598 | 7.173 | 8.610 | | 5 | 0.267 | 0.727 | 1.476 | 2.015 | 2.191 | 2.571 | 2.757 | 3.365 | 4.032 | 4.773 | 5.894 | 6.869 | | 6 | 0.265 | 0.718 | 1.440 | 1.943 | 2.104 | 2.447 | 2.612 | 3.143 | 3.707 | 4.317 | 5.208 | 5.959 | | 7 | 0.263 | 0.711 | 1.415 | 1.895 | 2.046 | 2.365 | 2.517 | 2.998 | 3.499 | 4.029 | 4.785 | 5.408 | | 8 | 0.262 | 0.706 | 1.397 | 1.860 | 2.004 | 2,306 | 2.449 | 2.896 | 3.355 | 3.833 | 4.501 | 5.041 | | 9 | 0.261 | 0.703 | 1.383 | 1.833 | 1.973 | 2.262 | 2.398 | 2.821 | 3.250 | 3.690 | 4.297 | 4.781 | | 10 | 0.260 | 0.700 | 1,372 | 1.812 | 1.948 | 2.228 | 2.359 | 2.764 | 3.169 | 3.581 | 4.144 | 4.587 | | 11 | 0.260 | 0.697 | 1.363 | 1.796 | 1.928 | 2.201 | 2.328 | 2.718 | 3.106 | 3.497 | 4.025 | 4.437 | | 12 | 0.259 | 0.695 | 1.356 | 1.782 | 1.912 | 2.179 | 2.303 | 2.681 | 3.055 | 3.428 | 3.930 | 4.318 | | 13 | 0.259 | 0.694 | 1.350 | 1.771 | 1.899 | 2.160 | 2.282 | 2.650 | 3.012 | 3.372 | 3.852 | 4.221 | | 14 | 0.258 | 0.692 | 1.345 | 1.761 | 1.887 | 2.145 | 2.264 | 2.624 | 2.977 | 3.326 | 3.787 | 4.140 | | 15 | 0.258 | 0.691 | 1.341 | 1.753 | 1.878 | 2.131 | 2.249 | 2.602 | 2.947 | 3.286 | 3.733 | 4.073 | | 16 | 0.258 | 0.690 | 1.337 | 1.746 | 1.869 | 2.120 | 2.235 | 2.583 | 2.921 | 3.252 | 3.686 | 4.015 | | 17 | 0.257 | 0.689 | 1.333 | 1.740 | 1.862 | 2.110 | 2.224 | 2.567 | 2.898 | 3.222 | 3.646 | 3.965 | | 18 | 0.257 | 0.688 | 1.330 | 1.734 | 1,855 | 2.101 | 2.214 | 2.552 | 2.878 | 3.197 | 3.610 | 3.922 | | 19 | 0.257 | 0.688 | 1.328 | 1.729 | 1.850 | 2.093 | 2.205 | 2.539 | 2.861 | 3.174 | 3.579 | 3.883 | | 20 | 0.257 | 0.687 | 1.325 | 1.725 | 1.844 | 2.086 | 2.197 | 2.528 | 2.845 | 3.153 | 3.552 | 3.850 | | 21 | 0.257 | 0.686 | 1.323 | 1.721 | 1.840 | 2.080 | 2.189 | 2.518 | 2.831 | 3.135 | 3.527 | 3.819 | | 22 | 0.256 | 0.686 | 1.321 | 1.717 | 1.835 | 2.074 | 2.183 | 2.508 | 2.819 | 3.119 | 3.505 | 3.792 | | 23 | 0.256 | 0.685 | 1.319 | 1.714 | 1.832 | 2.069 | 2.177 | 2.500 | 2.807 | 3,104 | 3.485 | 3.768 | | 24 | 0.256 | 0.685 | 1.318 | 1.711 | 1.828 | 2.064 | 2.172 | 2,492 | 2.797 | 3.091 | 3,467 | 3.745 | | 25 | 0.256 | 0.684 | 1.316 | 1.708 | 1.825 | 2.060 | 2.167 | 2.485 | 2.787 | 3.078 | 3.450 | 3.725 | | 26 | 0.256 | 0.684 | 1.315 | 1.706 | 1,822 | 2.056 | 2.162 | 2.479 | 2.779 | 3.067 | 3.435 | 3.707 | | 27 | 0.256 | 0.684 | 1.314 | 1.703 | 1.819 | 2.052 | 2.158 | 2.473 | 2.771 | 3.057 | 3.421 | 3.689 | | 28 | 0.256 | 0.683 | 1.313 | 1.701 | 1.817 | 2.048 | 2.154 | 2.467 | 2.763 | 3.047 | 3.408 | 3.674 | | 29 | 0.256 | 0.683 | 1.311 | 1.699 | 1.814 | 2.045 | 2.150 | 2.462 | 2.756 | 3.038 | 3.396 | 3.660 | | 30 | 0.256 | 0.683 | 1.310 | 1.697 | 1.812 | 2.042 | 2.147 | 2.457 | 2.750 | 3.030 | 3.385 | 3.646 | | 31 | 0.256 | 0.682 | 1.309 | 1.696 | 1.810 | 2.040 | 2.144 | 2.453 | 2.744 | 3.022 | 3.375 | 3.633 | | 32 | 0.255 | 0.682 | 1.309 | 1.694 | 1.808 | 2.037 | 2.141 | 2.449 | 2.738 | 3.015 | 3.365 | 3.622 | | 33 | 0.255 | 0.682 | 1.308 | 1.692 | 1.806 | 2.035 | 2.138 | 2.445 | 2.733 | 3.008 | 3.356 | 3.611 | | 34 | 0.255 | 0.682 | 1.307 | 1.691 | 1.805 | 2.032 | 2.136 | 2.441 | 2.728 | 3.002 | 3.348 | 3.601 | | 35 | 0.255 | 0.682 | 1.306 | 1.690 | 1.803 | 2.030 | 2.133 | 2.438 | 2.724 | 2.996 | 3.340 | 3.591 | | 36 | 0.255 | 0.681 | 1.306 | 1.688 | 1.802 | 2.028 | 2.131 | 2.434 | 2.719 | 2.990 | 3.333 | 3.582 | | 37 | 0.255 | 0.681 | 1.305 | 1.687 | 1.800 | 2.026 | 2.129 | 2.431 | 2.715 | 2.985 | 3.326 | 3.574 | | 38 | 0.255 | 0.681 | 1.304 | 1.686 | 1.799 | 2.024 | 2.127 | 2.429 | 2.712 | 2.980 | 3.319 | 3.566 | | 39 | 0.255 | .0.681 | 1.304 | 1.685 | 1.798 | 2.023 | 2.125 | 2.426 | 2.708 | 2.976 | 3.313 | 3.558 | | 40 | 0.255 | 0.681 | 1.303 | 1.684 | 1.796 | 2.021 | 2.123 | 2.423 | 2.704 | 2.971 | 3.307 | 3.551 | | 60 | 0.254 | 0.679 | 1.296 | 1.671 | 1.781 | 2.000 | 2.099 | 2.390 | 2.660 | 2.915 | 3.232 | 3.460 | | 80 | 0.254 | 0.678 | 1.292 | 1.664 | 1.773 | 1.990 | 2.088 | 2.374 | 2.639 | 2.887 | 3.195 | 3.416 | | 100 | 0.254 | 0.677 | 1.290 | 1.660 | 1.769 | 1.984 | 2.081 | 2.364 | 2.626 | 2.871 | 3.174 | 3.390 | | 120 | 0.254 | 0.677 | 1.289 | 1.658 | 1.766 | 1.980 | 2.076 | 2.358 | 2.617 | 2.860 | 3.160 | 3.373 | | 140 | 0.254 | 0.676 | 1.288 | 1.656 | 1.763 | 1.977 | 2.073 | 2.353 | 2.611 | 2.852 | 3.149 | 3.361 | | 160 | 0.254 | 0.676 | 1.287 | 1.654 | 1.762 | 1.975 | 2.071 | 2.350 | 2.607 | 2.847 | 3.142 | 3.352 | | 180 | 0.254 | 0.676 | 1.286 | 1.653 | 1.761 | 1.973 | 2.069 | 2.347 | 2.603 | 2.842 | 3.136 | 3.345 | | 200 | 0.254 | 0.676 | 1.286 | 1.653 | 1.760 | 1.972 | 2.067 | 2.345 | 2,601 | 2.838 | 3.131 | 3.340 | | 250 | 0.254 | 0.675 | 1.285 | 1:651 | 1.758 | 1.969 | 2.065 | 2.341 | 2.596 | 2.832 | 3.123 | 3.330 | | inf | 0.253 | 0.674 | 1.282 | 1.645 | 1.751 | 1.960 | 2.054 | 2.326 | 2.576 | 2.807 | 3.090 | 3.290 | Z - Table The table shows cumulative probabilities for the standard normal curve. # Cumulative probabilities for NEGATIVE z-values are shown first. SCROLL DOWN to the 2^{nd} page for POSITIVE z | Z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 | |------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | -3.4 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0002 | | -3.3 | .0005 | .0005 | .0005 | .0004 | .0004 | .0004 | .0004 | .0004 | .0004 | .0003 | | -3.2 | .0007 | .0007 | .0006 | .0006 | .0006 | .0006 | .0006 | .0005 | .0005 | .0005 | | -3.1 | .0010 | .0009 | .0009 | .0009 | .0008 | .0008 | .0008 | .0008 | .0007 | .0007 | | -3.0 | .0013 | .0013 | 0013_ | .0012 | .0012 | .0011 | .0011 | 0011 | .0010 | .0010 | | -2.9 | .0019 | .0018 | .0018 | .0017 | .0016 | .0016 | .0015 | .0015 | .0014 | .0014 | | -2.8 | .0026 | .0025 | .0024 | .0023 | .0023 | .0022 | .0021 | .0021 | .0020 | .0019 | | -2.7 | .0035 | .0034 | .0033 | .0032 | .0031 | .0030 | .0029 | .0028 | .0027 | .0026 | | -2.6 | .0047 | .0045 | .0044 | .0043 | .0041 | .0040 | .0039 | .0038 | .0037 | .0036 | | -2.5 | .0062 | .0060 | .0059 | .0057 | .0055 | .0054 | .0052 | .0051 | .0049 | .0048 | | -2.4 | .0082 | .0080 | .0078 | .0075 | .0073 | .0071 | .0069 | .0068 | .0066 | .0064 | | -2.3 | .0107 | .0104 | .0102 | .0099 | .0096 | .0094 | .0091 | .0089 | .0087 | .0084 | | -2.2 | .0139 | .0136 | .0132 | .0129 | .0125 | .0122 | .0119 | .0116 | .0113 | .0110 | | -2.1 | .0179 | .0174 | .0170 | .0166 | .0162 | .0158 | .0154 | .0150 | .0146 | .0143 | | -2.0 | .0228 | .0222 | .0217 | .0212 | .0207 | .0202 | .0197 | .0192 | .0188 | .0183 | | -1.9 | .0287 | .0281 | .0274 | .0268 | .0262 | .0256 | .0250 | .0244 | .0239 | .0233 | | -1.8 | .0359 | .0351 | .0344 | .0336 | .0329 | .0322 | .0314 | .0307 | .0301 | .0294 | | -1.7 | .0446 | .0436 | .0427 | .0418 | .0409 | .0401 | .0392 | .0384 | .0375 | .0367 | | -1.6 | .0548 | .0537 | .0526 | .0516 | .0505 | .0495 | .0485 | .0475 | .0465 | .0455 | | -1.5 | .0668 | .0655 | .0643 | .0630 | .0618 | .0606 | .0594 | .0582 | .0571 | .0559 | | -1.4 | .0808 | .0793 | .0778 | .0764 | .0749 | .0735 | .0721 | .0708 | .0694 | .0681 | | -1.3 | .0968 | .0951 | .0934 | .0918 | .0901 | .0885 | .0869 | .0853 | .0838 | .0823 | | -1.2 | .1151 | .1131 | .1112 | .1093 | .1075 | .1056 | .1038 | .1020 | .1003 | .0985 | | 4.1 | .1357 | .1335 | .1314 | .1292 | .1271 | .1251 | .1230 | .1210 | .1190 | .1170 | | -1.0 | .1587 | .1562 | .1539 | .1515 | .1492 | .1469 | .1446 | .1423 | .1401 | .1379 | | -0.9 | .1841 | .1814 | .1788 | .1762 | .1736 | .1711 | .1685 | .1660 | .1635 | .1611 | | -0.8 | .2119 | .2090 | .2061 | .2033 | .2005 | .1977 | .1949 | .1922 | .1894 | .1867 | | -0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 | | -0.6 | .2743 | .2709 | .2676 | .2643 | .2611 | .2578 | .2546 | .2514 | .2483 | .2451 | | -0.5 | .3085 | .3050 | .3015 | .2981 | .2946 | .2912 | .2877 | .2843 | .2810 | .2776 | | -0.4 | .3446 | .3409 | .3372 | .3336 | .3300 | .3264 | .3228 | .3192 | .3156 | .3121 | | -0.3 | .3821 | .3783 | .3745 | .3707 | .3669 | .3632 | .3594 | .3557 | .3520 | .3483 | | -0.2 | .4207 | .4168 | .4129 | .4090 | ,4052 | .4013 | .3974 | .3936 | .3897 | .3859 | | -0.1 | .4602 | .4562 | .4522 | .4483 | .4443 | .4404 | .4364 | .4325 | .4286 | .4247 | | 0.0 | .5000 | .4960 | .4920 | .4880 | .4840 | .4801 | .4761 | .4721 | .4681 | .4641 | # **APPENDIX E: The Chi-Square Distribution** | dſ\p | .995 | .990 | .975 | .950 | .900 | .750 | .500 | .250 | .100 | .050 | .025 | .010 | .005 | |------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | 1 | 0.00004 | 0.00016 | 0.00098 | 0.00393 | 0.01579 | 0.10153 | 0.45494 | 1.32330 | 2.70554 | 3.84146 | 5.02389 | 6.63490 | 7.87944 | | 2 | 0.01003 | 0.02010 | 0.05064 | 0.10259 | 0.21072 | 0.57536 | 1.38629 | 2.77259 | 4.60517 | 5.99146 | 7.37776 | 9.21034 | 10.59663 | | 3 | 0.07172 | 0.11483 | 0.21580 | 0.35185 | 0.58437 | 1.21253 | 2.36597 | 4.10834 | 6.25139 | 7.81473 | 9.34840 | 11.34487 | 12.83816 | | 4 | 0.20699 | 0.29711 | 0.48442 | 0.71072 | 1.06362 | 1.92256 | 3.35669 | 5.38527 | 7.77944 | 9.48773 | 11.14329 | 13.27670 | 14.86026 | | 5 | 0.41174 | 0.55430 | 0.83121 | 1.14548 | 1.61031 | 2.67460 | 4.35146 | 6.62568 | 9.23636 | 11.07050 | 12.83250 | 15.08627 | 16.74960 | | 6 | 0.67573 | 0.87209 | 1.23734 | 1.63538 | 2.20413 | 3.45460 | 5.34812 | 7.84080 | 10.64464 | 12.59159 | 14.44938 | 16.81189 | 18.54758 | | 7 | 0.98926 | 1.23904 | 1.68987 | 2.16735 | 2.83311 | 4.25485 | 6.34581 | 9.03715 | 12.01704 | 14.06714 | 16.01276 | 18.47531 | 20.27774 | | 8 | 1.34441 | 1.64650 | 2.17973 | 2.73264 | 3.48954 | 5.07064 | 7.34412 | 10.21885 | 13.36157 | 15.50731 | 17.53455 | 20.09024 | 21.95495 | | 9 | 1.73493 | 2.08790 | 2.70039 | 3.32511 | 4.16816 | 5.89883 | 8.34283 | 11.38875 | 14.68366 | 16.91898 | 19.02277 | 21.66599 | 23.58935 | | 10 | 2.15586 | 2.55821 | 3.24697 | 3.94030 | 4.86518 | 6.73720 | 9.34182 | 12.54886 | 15.98718 | 18.30704 | 20.48318 | 23.20925 | 25.18818 | | 11 | 2.60322 | 3.05348 | 3.81575 | 4.57481 | 5.57778 | 7.58414 | 10.34100 | 13.70069 | 17.27501 | 19.67514 | 21.92005 | 24.72497 | 26.75685 | | 12 | 3.07382 | 3.57057 | 4.40379 | 5.22603 | 6.30380 | 8.43842 | 11.34032 | 14.84540 | 18.54935 | 21.02607 | 23.33666 | 26.21697 | 28.29952 | | 13 | 3.56503 | 4.10692 | 5.00875 | 5.89186 | 7.04150 | 9.29907 | 12.33976 | 15.98391 | 19.81193 | 22.36203 | 24.73560 | 27.68825 | 29.81947 | | 14 | 4.07467 | 4.66043 | 5.62873 | 6.57063 | 7.78953 | 10.16531 | 13.33927 | 17.11693 | 21.06414 | 23.68479 | 26.11895 | 29.14124 | 31.31935 | | 15 | 4.60092 | 5.22935 | 6.26214 | 7.26094 | 8.54676 | 11.03654 | 14.33886 | 18.24509 | 22.30713 | 24.99579 | 27.48839 | 30.57791 | 32.80132 | | 16 | 5.14221 | 5.81221 | 6.90766 | 7.96165 | 9.31224 | 11.91222 | 15.33850 | 19.36886 | 23.54183 | 26.29623 | 28.84535 | 31.99993 | 34.26719 | | 17 | 5.69722 | 6.40776 | 7.56419 | 8.67176 | 10.08519 | 12.79193 | 16.33818 | 20.48868 | 24.76904 | 27.58711 | 30.19101 | 33.40866 | 35.71847 | | 18 | 6.26480 | 7.01491 | 8.23075 | 9.39046 | 10.86494 | 13.67529 | 17.33790 | 21.60489 | 25.98942 | 28.86930 | 31.52638 | 34.80531 | 37.15645 | | 19 | 6.84397 | 7.63273 | 8.90652 | 10.11701 | 11.65091 | 14.56200 | 18.33765 | 22.71781 | 27.20357 | 30.14353 | 32.85233 | 36.19087 | 38.58226 | | 20 | 7.43384 | 8.26040 | 9.59078 | 10.85081 | 12.44261 | 15.45177 | 19.33743 | 23.82769 | 28.41198 | 31.41043 | 34.16961 | 37.56623 | 39.99685 | | 21 | 8.03365 | 8.89720 | 10.28290 | 11.59131 | 13.23960 | 16.34438 | 20.33723 | 24.93478 | 29.61509 | 32.67057 | 35.47888 | 38.93217 | 41.40106 | | 22 | 8.64272 | 9.54249 | 10.98232 | 12.33801 | 14.04149 | 17.23962 | 21.33704 | 26.03927 | 30.81328 | 33.92444 | 36.78071 | 40.28936 | 42.79565 | | 23 | 9,26042 | 10.19572 | 11.68855 | 13.09051 | 14.84796 | 18.13730 | 22.33688 | 27.14134 | 32.00690 | 35.17246 | 38.07563 | 41.63840 | 44.18128 | | 24 | 9.88623 | 10.85636 | 12.40115 | 13.84843 | 15.65868 | 19.03725 | 23.33673 | 28.24115 | 33.19624 | 36.41503 | 39.36408 | 42.97982 | 45.55851 | | 25 | 10.51965 | 11.52398 | 13.11972 | 14.61141 | 16.47341 | 19.93934 | 24.33659 | 29.33885 | 34.38159 | 37.65248 | 40.64647 | 44.31410 | 46.92789 | | 26 | 11.16024 | 12.19815 | 13.84390 | 15.37916 | 17.29188 | 20.84343 | 25.33646 | 30.43457 | 35.56317 | 38.88514 | 41.92317 | 45.64168 | 48.28988 | | 27 | 11.80759 | 12.87850 | 14.57338 | 16.15140 | 18.11390 | 21.74940 | 26.33634 | 31.52841 | 36.74122 | 40.11327 | 43.19451 | 46.96294 | 49.64492 | | 28 | 12.46134 | 13.56471 | 15.30786 | 16.92788 | 18.93924 | 22.65716 | 27.33623 | 32.62049 | 37.91592 | 41.33714 | 44.46079 | 48.27824 | 50.99338 | | 29 | 13.12115 | 14.25645 | 16.04707 | 17.70837 | 19.76774 | 23.56659 | 28.33613 | 33.71091 | 39.08747 | 42.55697 | 45.72229 | 49.58788 | 52.33562 | | 30 | 13.78672 | 14.95346 | 16.79077 | 18.49266 | 20.59923 | 24.47761 | 29.33603 | 34.79974 | 40.25602 | 43.77297 | 46.97924 | 50.89218 | 53.67196 |